Abstract

The current antibacterial wound dressings with antibiotic substances or metal bactericidal agents may lead to severe multidrug resistance and poor biocompatibilities. Herein, we report an inherent antibacterial hydrogel constructed by only two naturally small molecules gallic acid (GA) and diammonium glycyrrhizinate (DG) for promoting Staphylococcus aureus (S. aureus)-infected wound healing. The resultant GAD hydrogel can be fabricated by co-assembly of these two materials through simple steps. Thanks to the incorporation of GA and DG, GAD hydrogel enabled a strong mechanical performance and great self-healing property with a sustained-release of drugs into skin wounds. Moreover, the cell viability assays showed that GAD hydrogel had good cytocompatibility by promoting cell proliferation and migration. In addition, GAD hydrogel had broad antibacterial efficiency against both Gram-positive and Gram-negative bacteria. Taken together, GAD hydrogel is a promising dressing to accelerate bacterial-infected wound healing through reconstructing an intact and thick epidermis without antibiotics or cytokines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.