Abstract

A novel Ag2CO3/ZnFe2O4/bentonite composite photocatalyst with a Z-type heterojunction was prepared using a solvothermal-in situ precipitation method. Under optimal conditions, with a mass ratio of ZnFe2O4 to bentonite at 1:1.5 and a mass ratio of Ag2CO3 to ZnFe2O4/bentonite at 1:3, the removal rate of norfloxacin (NOR) solution at 30 mg/L by Ag2CO3/ZnFe2O4/bentonite under visible light irradiation was found to be as high as 94.40% At the same time, the photocatalyst has good universality and reuse stability. The experimental results of photocatalyst characterization and mechanism exploration demonstrate that the photocatalytic activity of Ag2CO3/ZnFe2O4/bentonite is significantly enhanced, which can be attributed to the effective separation of electron-hole pairs, improvement in visible light absorption capacity, and enhancement of adsorption properties. The radical capture experiments revealed that h+ played a pivotal role in the photocatalytic degradation of NOR by Ag2CO3/ZnFe2O4/bentonite, while ·O2− and ·OH acted as secondary factors. Ultimately, a Z-type heterojunction electron transfer mechanism was proposed. This study proposes the Ag2CO3/ZnFe2O4/bentonite photocatalysts with excellent stability for the treatment of NOR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call