Abstract

Ag/NaBiO3 with dual active sites and high capacitance was prepared by the photo-deposition method. Upon light illumination, the reduction of Ag+ to Ag, the introduction of oxygen vacancies, and the electron storage in Ag nanoparticles simultaneously happened. NO, and O2 adsorbed and activated at Ag site and oxygen vacancy site, respectively, to produce active ON* and •O2- radical species. The increased concentrations of the active oxygen species and the pre-oxidation of NO resulted in the enhanced NO removal with inhibited production of NO2. Moreover, the high capacitance of Ag and the continuous charge transfer from defective NaBiO3 to Ag offered the enhanced and long-lasting dark catalytic activity of the Ag/NaBiO3. The stored electrons in Ag were directly released in dark to decompose methyl orange and/or tetracycline. This work provides a novel idea of designing and preparing a multifunctional catalytic material for environmental cleaning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.