Abstract

10-Deacetylbaccatin III (10-DAB) C10 acetylation is an indispensable procedure for Taxol semi-synthesis, which often requires harsh conditions. 10-Deacetylbaccatin III-10-β-O-acetyltransferase (DBAT) catalyzes the acetylation but acetyl-CoA supply remains a key limiting factor. Here we refactored the innate biosynthetic pathway of acetyl-CoA in Escherichia coli and obtained a chassis with acetyl-CoA productivity over three times higher than that of the host cell. Then, we constructed a microbial cell factory by introducing DBAT gene into this chassis for efficiently converting 10-DAB into baccatin III. We found that baccatin III could be efficiently deacetylated into 10-DAB by DBAT with CoASH and K+ under alkaline condition. Thus, we fed acetic acid to the engineered strain both for serving as a substrate of acetyl-CoA biosynthesis and for alleviating the deacetylation of baccatin III. The fermentation conditions were optimized and the baccatin III titers reached 2, 3 and 4.6 g/L, respectively, in a 3-L bioreactor culture when 2, 3 and 6 g/L of 10-DAB were supplied. Our study provides an environment-friendly approach for the large scale 10-DAB acetylation without addition of acetyl-CoA in the industrial Taxol semi-synthesis. The finding of DBAT deacetylase activity may broaden its application in the structural modification of pharmaceutically important lead compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.