Abstract

Currently, organic dyes and other environmental contaminants are focal areas of research, with considerable interest in the production of stable, high-efficiency, and eco-friendly photocatalysts to eliminate these contaminants. In the present work, bismuth-doped zinc ferrite (Bi-ZnFe2O4) nanoparticles (NPs) and bismuth-doped zinc ferrites supported on sulfur-doped graphitic carbon nitride (Bi-ZnFe2O4/S-g-C3N4) (BZFG) photocatalysts were synthesized via a hydrothermal process. SEM, XRD, and FTIR techniques were used to examine the morphological, structural, and bonding characteristics of the synthesized photocatalysts. The photocatalytic competence of the functional BZFG nanocomposites (NCs) was studied against MB under sunlight. The influence of Bi (0.5, 1, 3, 5, 7, 9, and 11 wt.%) doping on the photocatalytic performance of ZnFe2O4 was verified, and the 9%Bi-ZnFe2O4 nanoparticles exhibited the maximum MB degradation. Then, 9%Bi-ZnFe2O4 NPs were homogenized with varying amounts of S-g-C3N4 (10, 30, 50, 60, and 70 wt.%) to further enhance the photocatalytic performance of BZFG NCs. The fabricated Bi-ZnFe2O4/30%S-g-C3N4 (BZFG-30) composite outperformed ZnFe2O4, S-g-C3N4 and other BZFG NCs in terms of photocatalytic performance. The enriched photocatalytic performance of the BZFG NCs might be ascribed to a more efficient transfer and separation of photo-induced charges due to synergic effects at the Bi-ZnFe2O4/S-g-C3N4 interconnection. The proposed modification of ZnFe2O4 using Bi and S-g-C3N4 is effective, inexpensive, and environmentally safe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call