Abstract

Glycosylation is an important method of modifying natural products and is usually catalyzed by uridine 5'-diphosphate (UDP)-glycosyltransferase. UDP-β-l-arabinose (UDP-Ara) confers specific functions to natural products such as pentacyclic triterpenoids. However, UDP-arabinosyltransferase with high regioselectivity toward pentacyclic triterpenoids has rarely been reported. In addition, UDP-Ara is mainly biosynthesized from UDP-α-d-glucose (UDP-Glc) through several reaction steps, resulting in the high cost of UDP-Ara. Herein, UGT99D1 was systematically characterized for specifically transferring one moiety of arabinose to the C-3 position of typical pentacyclic triterpenoids. Subsequently, 15 enzymes from plants, mammals, and microorganisms were characterized, and a four-enzyme cascade comprising sucrose synthase, UDP-Glc dehydrogenase, UDP-α-d-glucuronic acid decarboxylase, and UDP-Glc 4-epimerase was constructed to transform sucrose into UDP-Ara with UDP recycling. This system was demonstrated to efficiently produce the arabinosylated derivative (Ara-BA) of typical pentacyclic triterpenoid betulinic acid (BA). Finally, the in vitro cytotoxicity tests indicated that Ara-BA showed much higher anticancer activities than BA. The established arabinosylation platform shows the potential to enhance the pharmacological activity of natural products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call