Abstract

Inter-organelle interactions play a vital role in diverse biological processes. Thus, chemical tools are highly desirable for understanding the spatiotemporal dynamic interplay among organelles in live cells and in vivo. However, designing such tools is still a great challenge due to the lack of universal design strategies. To break this bottleneck, herein, a novel unimolecular platform integrating the twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE) dual mechanisms was proposed. As a proof of concept, two organelles, lipid droplets (LDs) and mitochondria, were selected as models. Also, the first TICT-AIE integration molecule, BETA-1, was designed for simultaneous and dual-color imaging of LDs and mitochondria. BETA-1 can simultaneously target LDs and mitochondria due to its lipophilicity and cationic structure and emit cyan fluorescence in LDs and red fluorescence in mitochondria. Using BETA-1, for the first time, we obtained long-term tracking of dynamic LD-mitochondrion interactions and identified several impressive types of dynamic interactions between these two organelles. More importantly, the increase in LD-mitochondrion interactions during ferroptosis was revealed with BETA-1, suggesting that intervening in the LD-mitochondrion interactions may modulate this cell death. BETA-1 was also successfully applied for in vivo imaging of LD-mitochondrion interactions in C. elegans. This study not only provides an effective tool for uncovering LD-mitochondrion interactions and deciphering related biological processes but also sheds light on the design of new probes with an integrated TICT-AIE mechanism for imaging of inter-organelle interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.