Abstract

Dendritic cells (DCs) are the antigen-presenting cells that initiate and direct adaptive immune responses, and thus are critically important in vaccine design. Although DC-targeting vaccines have attracted attention, relevant studies on chicken are rare. A high diversity T7 phage display nanobody library was constructed for bio-panning of intact chicken bone marrow DCs to find DC-specific binding nanobodies. After three rounds of screening, 46 unique sequence phage clones were identified from 125 randomly selected phage clones. Several DC-binding phage clones were selected using the specificity assay. Phage-54, -74, -16 and -121 bound not only with chicken DCs, but also with duck and goose DCs. In vitro, confocal microscopy observation demonstrated that phage-54 and phage-74 efficiently adsorbed onto DCs within 15 min compared to T7-wt. The pull-down assay, however, did not detect any of the previously reported proteins for chicken DCs that could have interacted with the nanobodies displayed on phage-54 and phage-74. Nonetheless, Specified pathogen-free chickens immunized with phage-54 and phage-74 displayed higher levels of anti-p10 antibody than the T7-wt, indicating enhanced antibody production by nanobody mediated-DC targeting. Therefore, this study identified two avian (chicken, duck and goose) DC-specific binding nanobodies, which may be used for the development of DC-targeting vaccines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.