Abstract
The increasing global awareness of environmental issues has led to a growing interest in research on cellulose-based film. However, several limitations hinder their development and industrial application, such as hydrophilicity, inadequate mechanical properties and barrier properties, and a lack of activity. This study aimed to create a sustainable and hydrophobic high-performance all-green pineapple peel cellulose nanocomposite film for food packaging by incorporating natural carnauba wax and cellulose nanofibers (CNF) into a pineapple peel cellulose matrix. The results showed that adding carnauba wax to the cellulose matrix converted the surface wettability of the cellulose-based film from hydrophilic to hydrophobic (water contact angle over 100). Additionally, the film exhibited ultraviolet resistance and antioxidation properties. The incorporation of CNF further improved the barrier properties, mechanical properties, and thermal stability of the cellulose nanocomposite film. In applied experiments, the cellulose nanocomposite film delayed post-harvest deterioration and maintained storage quality of cherry tomatoes. Importantly, the cellulose nanocomposite film could be degraded in soil within 30 days. It can be concluded that the cellulose nanocomposite film has great potential to alleviate the environmental problems and human health problems caused by non-degradable petroleum-based plastic packaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.