Abstract

We investigate an efficient quantum repeater protocol based on quantum dots (QDs) and optical microcavity coupled systems. The proposed system can be used for long-distance quantum entanglement distribution, exploiting the interaction between single photons and QDs embedded in optical microcavities. We present the entanglement generation and entanglement swapping modules with QDs in microcavity systems and generalize it to quantum repeaters. The utilization of QDs and coupled cavities leads to a high success probability for the generation of entanglement. By using current and near future technology, entanglement with a high fidelity can be achieved and robust quantum communication over long-distance channels is feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call