Abstract

In this study, hot compression experiments were conducted on cast TC21 titanium alloy using a Gleeble-1500D thermal simulation compression tester, and the hot-compressed specimens were heat-treated. The data obtained after analyzing the thermal compression of cast TC21 titanium alloy were analyzed to construct a thermal machining diagram with a strain of 0.8 and to optimize the machining window. This study investigated the microstructure of the alloy after hot pressing experiments and heat treatment, applying the study of the microstructure evolution law of cast TC21 titanium alloy. The analysis of the tissue evolution law established the dynamic and static recrystallization volume fraction as a function of heat deformation parameters. The results show that the optimal processing window for cast TC21 titanium alloy is a deformation temperature in the range of 1373 K–1423 K and a strain rate of 0.1 s−1. The increase in deformation volume and deformation temperature both favor recrystallization and make the recrystallization volume fraction increase, but the increase in strain rate will inhibit the increase in the recrystallization degree to some extent. The dynamic and static recrystallization equations for the cast TC21 titanium alloy at different temperatures were constructed. The experimental measurements of recrystallization volume fraction are in good agreement with the predicted values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call