Abstract

In this work, a PCN/Fe2O3/CdS ternary heterojuction photocatalyst was constructed by introducing an appropriate amount of ferric oxide (Fe2O3) and cadmium sulfide (CdS) onto porous carbon nitride (PCN), denoted as PCN/Fe2O3/CdS. In the presence of PCN/Fe2O3/CdS, the turnover frequency value and selectivity of the oxidative coupling reaction of benzylamine were 6740 μmol g-1 h-1 and 99.4%, respectively. The excellent catalytic performance of the PCN/Fe2O3/CdS photocatalyst is attributed to fully exposed active sites due to the porous structure of PCN, improved light utilization efficiency by introduction of Fe2O3 and CdS, and increased mobility of e--h+ pairs by construction of a ternary heterostructure, and was proved by the analysis of its structural and optical properties. According to the substrate scope study and Hammett diagram analysis, the rate determining step of the benzylamine self-coupling reaction photocatalyzed by PCN/Fe2O3/CdS was the condensation of imine and benzylamine into N-benzylidenebenzylamine. The results of the free radical quenching experiment and electron spin resonance tests showed that h+ played a major role in the photoreaction process, followed by ˙O2- and ˙OH. After four photocatalytic reaction cycles, the catalytic performance of the PCN/Fe2O3/CdS heterojunction composite material remained good. Finally, combined with the free radical trapping experiment and energy band structure analysis, a possible double Z-type reaction mechanism was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.