Abstract

Efficient S-scheme heterojunction photocatalysts were prepared through in situ growth of AgBiO3 on BiOBr. The self-assembled hierarchical structure of AgBiO3/BiOBr was formed from flower-like AgBiO3 and plate-like BiOBr. The optimized AgBiO3/BiOBr heterojunction possessed excellent visible-light photocatalytic degradation efficiency (83%) for ciprofloxacin (CIP) after 120 min, with 1.46- and 4.15-times higher activity than pure AgBiO3 and BiOBr, respectively. Furthermore, the removal ratio of multiple organic pollutants including tetracycline, Rhodamine B, Lanasol Red 5B and methyl orange was also investigated. Environmental interference experiments demonstrated that high pollutant concentrations, low photocatalyst dose and the addition of ions (SO42−, PO43−, HPO42−, H2PO4−) inhibited the photocatalytic activities. Subsequently, a simultaneous degradation experiment showed the competitive actions between CIP and RhB for radicals, decreasing the photocatalytic activity of CIP. Furthermore, trapping and electron spin resonance experiments showed that h+ and ˙O2− played a certain role in the degradation process and that ˙OH acted as assistant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.