Abstract

This study aimed to prepare a novel “self-regenerative” electrochemical biosensor by successively modifying gold nanoparticles, four-arm polyethylene glycol-NH2, and NH2-MIL-53 (Al) (MOF) on the glassy carbon electrode interface. A hairpin G-triplex-mediated DNA (G3 probe) as a part of the mycoplasma ovine pneumonia (MO) gene was loosely adsorbed to MOF. Based on the mechanism of hybridization induction, the G3 probe could effectively detach from the MOF only after introducing the target DNA. Subsequently, its guanine-rich nucleic acid sequences were exposed to solution of methylene blue. As a result, the diffusion current of the sensor system showed a sharp decline. The developed biosensor showed excellent selectivity, and the concentration of target DNA exhibited a good correlation in the range 10–10 to 10–6 M with a detection limit of 1.00 pM (S/N = 3), even in 10% goat serum. Most interestingly, this biosensor interface automatically started the regeneration program. Moreover, regeneration could be effectively achieved at least seven times, and the recovery rate of the electrode interface and sensing efficiency was up to 90%. Additionally, this platform could be used for other clinical assays in various systems by simply changing the DNA sequence of the probe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call