Abstract

Ferrocene (Fc) was introduced into the layers of graphene oxide (GO) to form rGO-Fc with large surface area, high loading and high electroactivity. A chiral carbon nanocomposite rGO-Fc-CMC was synthesized via the adsorptional interaction between rGO-Fc and sodium carboxymethyl cellulose (CMC), and the successful synthesis of the chiral carbon nanocomposite (rGO-Fc-CMC) was showed by a series of characterization methods including scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS). The enantioselective interaction between chiral carbon nanocomposite (rGO-Fc-CMC) and tryptophan (Trp) enantiomers was detected by differential pulse voltammetry (DPV). The results demonstrated that the rGO-Fc-CMC/GCE showed a higher enantioselective capability for Trp than CMC/GCE, which can successfully break the limitation of a poor conductivity on CMC via the expansion of electrochemical signal. Therefore, designing an excellent-performance chiral carbon nanocomposite is of great significance in the construction of electrochemical sensors for chiral recognition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call