Abstract

Functional vascularization is crucial for maintaining the long-term patency of tissue-engineered trachea and repairing defective trachea. Herein, we report the construction and evaluation of a novel cell-free tissue-engineered tracheal scaffold that effectively promotes vascularization of the graft. Our findings demonstrated that exosomes derived from endothelial progenitor cells (EPC-Exos) enhance the proliferation, migration, and tube formation of endothelial cells. Taking advantage of the angiogenic properties of EPC-Exos, we utilized methacrylate gelatin (GelMA) as a carrier for endothelial progenitor cell exosomes and encapsulated them within a 3D-printed polycaprolactone (PCL) scaffold to fabricate a composite tracheal scaffold. The results demonstrated the excellent angiogenic potential of the methacrylate gelatin/vascular endothelial progenitor cell exosome/polycaprolactone tracheal scaffold. Furthermore, in vivo reconstruction of tracheal defects revealed the capacity of this composite tracheal stent to remodel vasculature. In conclusion, we have successfully developed a novel tracheal stent composed of methacrylate gelatin/vascular endothelial progenitor exosome/polycaprolactone, which effectively promotes angiogenesis for tracheal repair, thereby offering significant prospects for clinical and translational medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.