Abstract
An electrochemical non-enzymatic glucose sensor was fabricated by electrodeposition of copper nanoparticles (CuNPs) onto a poly(o-phenylenediamine) (PoPD) film-modified glassy carbon electrode (CuNPs/PoPD/GCE). We had studied some factors such as the pH value of supporting electrolyte, the amount of PoPD and applied potentials and optimize the experiment conditions. Under the optimum conditions, the as-obtained sensor for glucose sensing had achieved a wide linear range, low detection limit, and fast response time. The current response of the as-obtained sensor towards electrochemical oxidation of glucose was linear with the concentration of glucose in the range of 5.0 μM to 1.6 mM (R = 0.998) in the solution of 0.1 M NaOH at the applied potential of 0.5 V. The detection limit is 0.25 μM and the fast response achieves within 1 s. The sensor exhibits good sensitivity, selectivity, and reproducibility. The proposed non-enzymatic glucose was successfully employed to determine glucose in blood samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.