Abstract

Background/Aims: Hepatocytes immortalized with a temperature-sensitive SV40 large T antigen (SV40Tag) function as well as primary hepatocytes following transplantation to reverse hepatic encephalopathy and improve survival in rodents with liver failure. The continued presence of SV40Tag in the conditionally immortalized hepatocytes may increase the risk of malignant tumor growth in transplant recipients. Methods: We immortalized hepatocytes using a recombinant retrovirus containing the gene encoding SV40Tag flanked by loxP recombination target sites. Excision of SV40Tag from immortalized cells could then be accomplished by site-specific recombination with Cre-recombinase. Results: Cells immortalized with this recombinant virus expressed SV40Tag and doubled in number every 48 h. After excision of the gene encoding SV40Tag with Cre-recombinase, cells stopped growing, DNA synthesis fell by 90%, and production of liver-specific mRNAs was either increased or became newly detectable. In addition, the morphology and epithelial cell polarity of the cells became more characteristic of differentiated hepatocytes. To determine their malignant potential, immortalized hepatocytes were transfected to express a second oncogene, activated H- ras. SV40Tag +/H-ras +-immortalized cells were capable of anchorage-independent growth and developed into tumors when injected in severe combined immunodeficiency mice. While Cre-recombinase delivery by recombinant adenovirus infection was not 100% efficient, when SV40Tag excision occurred anchorage-independent growth stopped and tumor formation in immunodeficient mice was abolished. Immortalized hepatocytes also contained the gene encoding herpes simplex virus thymidine kinase and treatment with ganciclovir produced complete regression of established tumors in mice. Conclusions: These studies extend previous work that indicates that a transplantable hepatocyte cell line could be developed for clinical use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.