Abstract

Brassica napus L. is an important oilseed and fodder crop with significant heterosis for seed yield and other agronomic traits, but very little is known about the molecular basis of heterosis. As an initial step towards understanding the molecular events associated with this phenomenon, a molecular functional map of rapeseed was constructed using differentially expressed genes in hybrid identified by microarrays. Single-strand conformational polymorphism (SSCP) analysis was applied for genetic mapping in an F2 population of 184 individuals resulting from crossing ‘`SI-1300 × Eagle’'. A total of 162 markers including 154 loci corresponding to 98 differentially expressed genes assigned to 17 functional categories and 8 SSR markers were grouped into 21 linkage groups (LGs), covering a total map distance of 2267.3 cM. Subsequently, this map was aligned with Arabidopsis thaliana in silico. Comparative mapping shows that genes localized on each Arabidopsis chromosome have orthologs dispreading in different B. napus LGs. Similarly, a majority of LGs were made of homologous genes from different Arabidopsis chromosomes. In addition, a total of 25 syntenic regions were identified in B. napus, in most of which the gene order was not consistent between the two species, and each of the conserved regions in the A. thaliana genome was homologous to 1--5 distinct regions in the B. napus genome. These results indicate that it is not easy to exploit A. thaliana information for B. napus based on synteny.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.