Abstract

Tobacco (Nicotiana tabacum L.) is an essential commercial crop and an ideal model plant for biological mechanism studies. As an allopolyploid species, tobacco harbors a massive and complex genome, which makes the application of molecular markers complicated and challenging. In our study, we performed whole-genome sequencing of an intraspecific recombinant inbred line (RIL) population, a F1 generation and their parents. With the Nicotiana tabacum (K326 cultivar) genome as reference, a total of 45,081 markers were characterized to construct the genetic map, which spanned a genetic distance of 3486.78 cM. Evaluation of a two-dimensional heat map proved the high quality of the genetic map. We utilized these markers to anchor scaffolds and analyzed the ancestral genome origin of linkage groups (LGs). Furthermore, such a high-density genetic map will be applied for quantitative trait locus (QTL) detection, gene localization, genome-wide association studies (GWAS), and marker-assisted breeding in tobacco.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.