Abstract

The study of biological systems at the genome scale helps us understand fundamental biological processes that govern the activity of living organisms and regulate their interactions with the environment. Genome-scale metabolic models are usually analysed using constraint-based methods, since detailed rate equations and kinetic parameters are often missing. However, constraint-based analysis is limited in capturing the dynamics of cellular processes. In this paper, we present an approach to build a genome-scale kinetic model of Mycobacterium tuberculosis metabolism using generic rate equations. M. tuberculosis causes tuberculosis which remains one of the largest killer infectious diseases. Using a genetic algorithm, we estimated kinetic parameters for a genome-scale metabolic model of M. tuberculosis based on flux distributions derived from Flux Balance Analysis. Our results show that an excellent agreement with flux values is obtained under several growth conditions, although kinetic parameters may vary in different conditions. Parameter variability analysis indicates that a high degree of redundancy remains present in model parameters, which suggests that the integration of other types of high-throughput datasets will enable the development of better constrained models accounting for a variety of in vivo phenotypes.

Highlights

  • Genome-scale metabolic models are essential to bridge the gap between metabolic phenotypes and genome-derived biochemical information, as they provide a platform for the interpretation of experimental data related to metabolic states and enable the in silico experimentation of cell metabolism

  • The final metabolic network of M. tuberculosis includes reactions needed for the synthesis of the cell membrane, complex lipids and carbohydrates, which are important for both growth and pathogenesis

  • The kinetic parameters used in our model were estimated using only flux values, there remains a degree of redundancy in parameter values as illustrated by Parameter Variability Analysis (PVA)

Read more

Summary

Introduction

Genome-scale metabolic models are essential to bridge the gap between metabolic phenotypes and genome-derived biochemical information, as they provide a platform for the interpretation of experimental data related to metabolic states and enable the in silico experimentation of cell metabolism. Using constraint-based methods and in silico simulation, the phenotypic functions of metabolic systems can be analysed under various environmental or physico-chemical conditions [2]. Applications of these computational methods to bacterial metabolic models have increased our understanding of bacterial evolution and metabolism [3]. Genome-scale models allow for the integration of various types of high-throughput data. The integration of regulatory interactions with metabolic networks has been successfully used to analyse phenotypes from gene-deletion studies and phenotypic arrays [4]. Other types of data, such as metabolomics and proteomics, have been integrated with constraint-based methods [5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call