Abstract

Intracellular redox homeostasis is highly important for the physiological processes of living organisms. Real-time monitoring of the dynamics of this intracellular redox process is pivotal but challenging because the biological redox reactions involved in the process are reversible and require at least one pair of oxidizing and reducing species. Thus, biosensors for investigating intracellular redox homeostasis need to be dual-functional, reversible, and, ideally, ratiometric in order for them to have real-time monitoring capacity and to provide accurate imaging information. In light of the importance of the redox pair between ClO- and GSH in living organisms, herein, we used the phenoselenazine (PSeZ) moiety as an electron donor and a reaction site to design a coumarin-based fluorescent probe, PSeZ-Cou-Golgi. After successive treatment with ClO- and GSH, the probe PSeZ-Cou-Golgi experienced an oxidation of selenium (Se) to selenoxide (Se═O) by ClO- and a subsequent reduction of Se═O to Se by GSH. The redox reactions alternatively changed the electron-donating strength of the donor in the probe PSeZ-Cou-Golgi, in turn affecting the intramolecular charge transfer process that resulted in the reversible, ratiometric change of fluorescence from red to green. After four cycles of reversible ClO-/GSH detection during in vitro experiments, the probe PSeZ-Cou-Golgi still had good performance. With the Golgi-targeting group, the probe PSeZ-Cou-Golgi was able to monitor the dynamic change of the ClO-/GSH-mediated redox state during Golgi oxidative stress, making it a versatile molecular tool. More importantly, the probe PSeZ-Cou-Golgi could facilitate the imaging of the dynamic redox state during acute lung injury progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call