Abstract
Rabbit (Oryctolagus cuniculus) represents a valuable source of biomedical models and corresponds to a small but active economic sector in Europe for meat and fur. The rabbit genome has not been thoroughly studied until recently, and high-resolution maps necessary for identification of genes and quantitative trait loci (QTL) are not yet available. Our aim was to isolate over 300 new and regularly distributed (TG)n or (TC)n rabbit microsatellites. To achieve this purpose, 164 microsatellite sequences were isolated from gene-containing bacterial artificial chromosome (BAC) clones previously localized by fluorescence in situ hybridization (FISH) on all the rabbit chromosomes. In addition, 141 microsatellite sequences were subcloned from a plasmid genomic library, and for 41 of these sequences, BAC clones were identified and FISH-mapped. TC repeats were present in 62% of the microsatellites derived from gene-containing BAC clones and in 22% of those from the plasmid genomic library, with an average of 42.9% irrespective of the microsatellite origin. These results suggest a higher proportion of (TC)n repeats and a nonhomogeneous distribution of (TG)n and (TC)n repeats in the rabbit genome compared to those in man. Among the 305 isolated microsatellites, 177 were assigned to 139 different cytogenetic positions on all the chromosomes except rabbit Chromosome 21. Sequence similarity searches provided hit locations on the Human Build 35a and hypothetical assignments on rabbit chromosomes for ten additional microsatellites. Taken together, these results report a reservoir of 305 new rabbit microsatellites of which 60% have a cytogenetic position. This is the first step toward the construction of an integrated cytogenetic and genetic map based on microsatellites homogeneously anchored to the rabbit genome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.