Abstract

Abstract In this paper, the available formulae for the curvature of plane curve are reviewed not only for the time-like but also for the space-like parameter curve. Two ways to describe the curve are proposed. One is the straight way to obtain the Frenet formula according to the given curve of parameter form. The other is that we can construct the curve by solving the state equation of Frenet formula subject to the initial position, the initial tangent, normal and binormal vectors, and the given radius of curvature and torsion constant. The remainder theorem of the matrix and the Cayley–Hamilton theorem are both employed to solve the Frenet equation. We review the available formulae of the radius of curvature and examine their equivalence. Through the Frenet formula, the relation among different expressions for the radius of curvature formulae can be linked. Therefore, we can integrate the formulae in the engineering mathematics, calculus, mechanics of materials and dynamics. Besides, biproduct of two new and simpler formulae and the available four formulae in the textbook of the radius of curvature yield the same radius of curvature for the plane curve. Linkage of centrifugal force and radius of curvature is also addressed. A demonstrative example of the cycloid is given. Finally, we use the two new formulae to obtain the radius of curvature for four curves, namely a circle. The equivalence is also proved. Animation for 2D and 3D curves is also provided by using the Mathematica software to demonstrate the validity of the present approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.