Abstract
Genetic studies of Streptococcus mutans have benefited greatly from the numerous techniques that have been successfully adapted for use in this organism. One notable exception is the lack of a negative selection system that can be employed for the easy isolation of markerless in-frame deletions. In this study, we report the development of a galK/galactose-based negative selection system in S. mutans for this purpose. This system consists of a recipient strain (IFD140) that contains a deletion in the galKTE operon and a suicide vector (pIFD-Sm) that carries the S. mutans galK open reading frame fused to the constitutive lactate dehydrogenase (ldh) promoter. Using this system we created a markerless in-frame deletion in the beta-galactosidase (lacG) gene within the S. mutans lactose operon. After vector integration, plasmid excision after counterselection appeared to have occurred in 100% of the galactose-resistant colonies and resulted in in-frame deletions in 50% of the screened isolates. Based on the ratio of galactose-resistant cells to total cells, we determined that plasmid excision occurred at a frequency of approximately 1/3000 cells. Furthermore, the simplicity of this system should make it adaptable for use in numerous other gram-positive and gram-negative organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.