Abstract

Circular RNAs (circRNAs) can interact with microRNAs (miRNAs) to regulate gene expression in cancer cells. However, the roles of competitive endogenous RNA (ceRNA) networks consisting of differentially expressed circRNAs (DECs), miRNAs, and messenger RNAs (mRNAs) in stomach adenocarcinoma (STAD) remain unclear. This study was performed to explore novel regulatory networks in STAD. The circRNA expression profiles, as well as miRNA and mRNA sequence data of STAD, were retrieved from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), respectively. Candidates were identified to construct a network through a comprehensive bioinformatics strategy. The expression of hub-genes identified by protein-protein interactions (PPI) was validated by quantitative reverse transcription (RT) polymerase chain reaction. A total of 51 DECs were identified in the GSE83521 and GSE89143 datasets of GEO. A total of 11 448 differentially expressed mRNAs (DEMs) and 458 differentially expressed miRNAs (DEMIs) were obtained by RNA sequencing of TCGA-STAD. Prediction by using five online databases (Cancer-Specific CircRNA, CircInteractome, miRTarBase, miRDB, and TargetScan) resulted in the selection of 6 DECs, 6 DEMIs, and 36 DEMs to establish a circRNA-miRNA-mRNA regulatory network based on the interactions of circRNA-miRNA and miRNA-mRNA. Through PPI analysis, four hub-genes (COL10A1, COL5A2, COL4A1, and COL3A1) were discovered. Moreover, overexpressions of COL10A1, COL5A1, and COL4A1 were associated with a poor overall survival rate of patients with STAD. On the basis of TNM staging, we found that the expressions of COL10A1, COL5A2, and COL3A1 in T2, T3, and T4 was significantly higher than in T1. Hub-genes expressions were validated in STAD tissues and cell lines. Our study provides a novel perspective on the regulatory mechanism of STAD involving ceRNAs including DECs, DEMIs, and DEMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.