Abstract

Chondroitin sulfate (CS) is a linear acidic polysaccharide, composed of repeating disaccharide units of glucuronic acid and N-acetyl-D-galactosamine and modified with sulfate residues at different positions, which plays various roles in development and disease. Here, we chemo-enzymatically synthesized various CS species with defined lengths and defined sulfate compositions, from chondroitin hexasaccharide conjugated with hexamethylenediamine at the reducing ends, using bacterial chondroitin polymerase and recombinant CS sulfotransferases, including chondroitin-4-sulfotransferase 1 (C4ST-1), chondroitin-6-sulfotransferase 1 (C6ST-1), N-acetylgalactosamine 4-sulfate 6-sulfotransferase (GalNAc4S-6ST), and uronosyl 2-sulfotransferase (UA2ST). Sequential modifications of CS with a series of CS sulfotransferases revealed their distinct features, including their substrate specificities. Reactions with chondroitin polymerase generated non-sulfated chondroitin, and those with C4ST-1 and C6ST-1 generated uniformly sulfated CS containing >95% 4S and 6S units, respectively. GalNAc4S-6ST and UA2ST generated highly sulfated CS possessing ∼90% corresponding disulfated disaccharide units. Sequential reactions with UA2ST and GalNAc4S-6ST generated further highly sulfated CS containing a mixed structure of disulfated units. Surprisingly, sequential reactions with GalNAc4S-6ST and UA2ST generated a novel CS molecule containing ∼29% trisulfated disaccharide units. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis using the CS library and natural CS products modified with biotin at the reducing ends, revealed details of the interactions of CS species with anti-CS antibodies, and with CS-binding molecules such as midkine and pleiotrophin. Chemo-enzymatic synthesis enables the generation of CS chains of the desired lengths, compositions, and distinct structures, and the resulting library will be a useful tool for studies of CS functions.

Highlights

  • Chondroitin sulfate (CS) is a linear polysaccharide, composed of repeating disaccharide units and modified with sulfate groups at various positions

  • 2H6 nd 0.111 Ϯ 0.013 0.0731 Ϯ 0.0076 0.494 Ϯ 0.054 0.403 Ϯ 0.047 nd nd nd 0.0359 Ϯ 0.007 0.166 Ϯ 0.014 nd 0.248 Ϯ 0.028 nd native CS sources designated as chondroitin sulfate A (CSA), CSC, CSD, and Recent studies have revealed that CS exhibits various func- CSE are available, their CS disaccharide compositions are not tions via specific binding to physiologically active molecules. uniform, preventing our understanding of the precise relationship between CS function and structure

  • We chemoenzymatically synthesized various CS species with defined compositions, some of which are of uniform structure, and with defined structure

Read more

Summary

Introduction

Chondroitin sulfate (CS) is a linear polysaccharide, composed of repeating disaccharide units and modified with sulfate groups at various positions. Chondroitin sulfate (CS) is a linear acidic polysaccharide, composed of repeating disaccharide units of glucuronic acid and N-acetyl-D-galactosamine and modified with sulfate residues at different positions, which plays various roles in development and disease. We chemo-enzymatically synthesized various CS species with defined lengths and defined sulfate compositions, from chondroitin hexasaccharide conjugated with hexamethylenediamine at the reducing ends, using bacterial chondroitin polymerase and recombinant CS sulfotransferases, including chondroitin-4-sulfotransferase 1 (C4ST-1), chondroitin-6-sulfotransferase 1 (C6ST-1), N-acetylgalactosamine 4-sulfate 6-sulfotransferase (GalNAc4S-6ST), and uronosyl 2-sulfotransferase (UA2ST). Sequential reactions with UA2ST and GalNAc4S-6ST generated further highly sulfated CS containing a mixed structure of disulfated units. Sequential reactions with GalNAc4S-6ST and UA2ST generated a novel CS molecule containing ϳ29% trisulfated disaccharide units. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis using the CS library and natural CS products modified with biotin at the reducing ends, revealed details of the interactions of CS species with anti-CS

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.