Abstract
Photocatalytic nitrogen (N2) reduction to ammonia (NH3), adopting H2O as the electron source, suffers from low efficiency owing to the sluggish kinetics of N2 reduction and the requirement of a substantial thermodynamic driving force. Herein, we present a straightforward approach for the construction of an S-scheme heterojunction of BiVO4/VS-MoS2 to successfully achieve photocatalytic N2 fixation, which is manufactured by coupling an N2-activation component (VS-MoS2 nanosheet) and water-oxidation module (BiVO4 nanocrystal) through electrostatic self-assembly. The VS-MoS2 nanosheet, enriched with sulfur vacancies, plays a pivotal role in facilitating N2 adsorption and activation. Additionally, the construction of the S-scheme heterojunction enhances the driving force for water oxidation and improves charge separation. Under simulated sunlight irradiation (100 mW cm-2), BiVO4/VS-MoS2 exhibits efficient photocatalytic N2 reduction activity with H2O as the proton source, yielding NH3 at a rate of 132.8 μmol g-1 h-1, nearly 7 times higher than that of pure VS-MoS2. This study serves as a noteworthy example of efficient N2 reduction to NH3 under mild conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.