Abstract

In this study, a new procedure for the fabrication of biosensors was developed. The method is based on the covalent attachment of nitrophenyl groups to the electrode surface via diazonium salt reaction followed by their conversion to amine moieties through electrochemical reduction and electrostatic layer-by-layer (LbL) assembly technique. In this procedure, highly stable iron oxide (Fe3O4) nanoparticles (IONPs), chitosan (CHIt), GOx, and Nile blue (NB) were assembled on the surface of aminophenyl modified glassy carbon electrode (AP/GCE) by LbL assembly technique. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the interfaces. The surface coverage of the active GOx and Michaelis–Menten constant (K M) of the immobilized GOx were Γ = 3.38 × 10−11 mol cm−2 and 2.54 mM, respectively. The developed biosensor displayed a well-defined amperometric response for glucose determination with high sensitivity (8.07 μA mM−1) and low limit of detection (LOD) of 19.0 μM. The proposed approach allows simple biointerface regeneration by increasing pH which causes disruption of the ionic interactions and release of the electrostatic attached layers. The biosensor can then be reconstructed again using fresh enzyme. Simple preparation, good chemical and mechanical stabilities, and easy surface renewal are remarkable advantages of the proposed biosensor fabrication procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.