Abstract

To facilitate genome analysis and map-based cloning of symbiotic genes in the model legume Medicago truncatula, a bacterial artificial chromosome (BAC) library was constructed. The library consists of 30 720 clones with an average insert size of approximately 100 kb, representing approximately five haploid-genome equivalents. The frequency of BAC clones carrying inserts of chloroplast DNA was estimated to be 1.4%. Screening of the library with single- or low-copy genes as hybridization probes resulted in the detection of 1–12 clones per gene. Hybridization of the library with repeated sequences such as rDNA genes and transposon-like elements of M. truncatula revealed the presence of 60 and 374 BAC clones containing the two sequences, respectively. The BAC library was pooled for screening by polymerase chain reaction (PCR)-amplification. To demonstrate the utility of this system, we used primers designed from a conserved region of the ein3-like loci of Arabidopsis thaliana and isolated six unique BAC clones from the library. DNA gel-blot and sequence analyses showed that these ein3-like clones could be grouped into three classes, an observation consistent with the presence of multiple ein3-like loci in M. truncatula. These results indicate that the BAC library represents a central resource for the map-based cloning and physical mapping in M. truncatula and other legumes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call