Abstract

With the electronic device advancing to miniaturization, higher integration and flexibility, flexible polymer composites with high thermal conductivity are desirable for efficient removal of accumulated heat to maintain normal operation of electronics. In this work, a polydimethylsiloxane/boron nitride nanosheets (PDMS/BNNS) foam scaffold was prepared by the sugar-templated method, and the corresponding PDMS/BNNS composites were manufactured with vacuum-assisted PDMS impregnation and curing. The PDMS/BNNS composites exhibit a three-dimensional (3D) BNNS interconnected network with curved BNNS pathways due to the intensive compression during hot-pressing curing, providing thermally conductive network and corresponding prestrains for deformable application. The PDMS/BNNS composites finally can achieve a high thermal conductivity of 7.55 W m−1 K−1 in the in-plane direction and 1.12 W m−1 K−1 in the through-plane direction with 25 vol% BNNS, which represent 153% and 78% increases over the composites prepared by randomly mixing method, respectively. In addition, the composite still maintains superior heat dissipation property under repeated stretching and bending conditions, which indicates a broad and bright application for thermal management in flexible electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.