Abstract

With the increasing use of Li batteries for storage, their safety issues and energy densities are attracting considerable attention. The Li metal battery (LMB) with limited capacity in the Li metal anode is one of ideal high energy-density systems due to eliminating the use of traditional anode, elevating the energy density of battery and reducing production costs. However, the side reactions between the electrolyte and metallic Li and the irreversible loss of lithium resources caused by the generation of "dead Li" will directly lead to the loss of battery capacity during the cycling process. Therefore, the cycle life of the LMB with limited capacity in the Li metal anode faces significant challenges. Herein, a bi-functional manganese oxide (MnO)/polypropylene/Li1+xAlxTi2-x(PO4)3 (LATP) composite separator is designed to construct a stable three dimensional (3D) Li metal in the surface of Cu foil for LMB. The MnO can dissolve in electrolytes with low concentration, which can be reduced to produce Mn and Li2O, functioning as nucleating seeds to induce sheet-like Li deposition. The sustainably released MnO also involves in the formation of solid electrolyte interphase (SEI) layer, which can be repaired promptly once damaged by the volume expansion of Li. The LATP coating layer is in situ transferred onto the sheet-like Li, acting as an artificial SEI layer for further protection. The constructed 3D Li metal anode with limited capacity shows improved cycle stability in LiFePO4 cell, which shows a capacity retention of 94.5% after 150 cycles. Our strategy, constructing stable 3D Li metal anode with bi-functional composite separator, will bring a new inspiration for developing high energy density LMB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.