Abstract

Photonic cancer hyperthermia has been considered to be one of the most representative noninvasive cancer treatments with high therapeutic efficiency and biosafety. However, it still remains a crucial challenge to develop efficient photothermal nanoagents with satisfactory photothermal performance and biocompatibility, among which two-dimensional (2D) ultrathin nanosheets have recently been regarded as the promising multifunctional theranostic agents for photothermal tumor ablation. In this work, we report, for the first time, on the construction of a novel kind of photothermal agents based on the intriguing 2D antimony(III) selenide (Sb2Se3) nanosheets for highly efficient photoacoustic imaging-guided photonic cancer hyperthermia by near-infrared (NIR) laser activation. These Sb2Se3 nanosheets were easily fabricated by a novel but efficiently combined liquid nitrogen pretreatment and freezing-thawing approach, which were featured with high photothermal-conversion capability (extinction coefficient: 33.2 L g-1 cm-1; photothermal-conversion efficiency: 30.78%). The further surface engineering of these Sb2Se3 ultrathin nanosheets with poly(vinyl pyrrolidone) (PVP) substantially improved the biocompatibility of the nanosheets and their stability in physiological environments, guaranteeing the feasibility in photonic antitumor applications. Importantly, 2D Sb2Se3-PVP nanosheets have been certificated to efficiently eradicate the tumors by NIR-triggered photonic tumor hyperthermia. Especially, the biosafety in vitro and in vivo of these Sb2Se3 ultrathin nanosheets has been evaluated and demonstrated. This work meaningfully expands the biomedical applications of 2D bionanoplatforms with a planar topology through probing into new members (Sb2Se3 in this work) of 2D biomaterials with unique intrinsic physiochemical property and biological effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.