Abstract

Developing cost-effective cocatalyst-modified photocatalytic systems with boosted carrier separation and rapid surface catalytic reaction is an ideal strategy for effectively converting solar energy into desired fuels. Herein, a series of Cu7S4/Mn0.3Cd0.7S hierarchical heterostructures are designed and fabricated to achieve efficient and robust photocatalytic H2 evolution by coupling one-dimensional (1D) Mn0.3Cd0.7S nanorods with two-dimensional (2D) Cu7S4 nanosheets through a facile sonochemical strategy. Benefiting from dimensionality and cocatalyst effects, the constructed 2D/1D Cu7S4/Mn0.3Cd0.7S heterojunction photocatalyst containing 1.5 wt% Cu7S4 displays excellent photostability and superior photocatalytic H2 evolution rate up to 914.3 μmol h−1, which is 4.43 and 2.22-folds increment relative to bare Mn0.3Cd0.7S and the 3 wt% Pt/Mn0.3Cd0.7S, respectively. The various characterization results reveal that the utilization of semimetallic Cu7S4 nanosheets as the cocatalyst to form a Schottky heterojunction can promote the light-harvesting capability, suppress charge carrier recombination, and provide sufficient reaction sites for hydrogen generation, thereby resulting in the dramatically improved photocatalytic performance. This work clarifies the role of Cu7S4 nanosheets as the robust and cost-effective cocatalyst in the photocatalytic reaction and opens a new horizon for designing other Cu7S4-based cocatalyst/semiconductor Schottky heterostructures for efficient solar-to-fuel conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call