Abstract
This paper considers reduction of the peak-to-average power ratio (PAPR) of M-quadrature amplitude modulation (QAM) sig-nals in orthogonal frequency division multiplexing (OFDM) systems. It is known that a 16-QAM or 64-QAM constellation can be written as the vector sum of two or three QPSK constellations respectively. We can then use the Golay complementary sequences over Z 4 to construct 16-QAM or 64-QAM OFDM sequences with low PAPR. In this paper, we further examine the squared Euclidean distance of these M-QAM sequences and their variations. Our goal here is to combine the block coded modulation (BCM) and Golay complementary sequences to trade off the PAPR, the code rate, and the squared Euclidean distance of M-QAM OFDM signals. In particular, some 16-QAM and 64-QAM OFDM sequences with low PAPR and large squared Euclidean distance are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.