Abstract

Developing efficient and nonprecious large-current-density based oxygen evolution reaction (OER) electrocatalysts is strongly required for sustainable industrial water splitting. Hence, a unique heterostructure erecting by Mo-doped CoFe layered double hydroxides coating NiCo2S4 nanotube arrays grown on nickel foam (NCS@CFM-LDH/NF) is elaborately demonstrated. It only needs an overpotential of 295/332 mV to achieve current density of 500/1000 mA cm−2, respectively, with a low Tafel slope of 83.0 mV dec−1 in alkaline media. NCS@CFM-LDH/NF also shows an ultra-long-term stability at 1000 mA cm−2 over 100 h. Its remarkable performance is ascribed to the synergic effect of multi-component and hierarchical structure. Additionally, Theoretical calculations disclose that the doping of molybdenum is beneficial to the adsorption of the *O intermediate, thus promotes OER activity. This study provides an attractive approach to design highly active and durable OER catalysts for industrial application in electrolysis of water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.