Abstract

Mesenchymal stem cells (MSCs), characterized by their self-renewal ability and multilineage differentiation potential, can be derived from various sources and are emerging as promising candidates for regenerative medicine, especially for regeneration of the tooth, bone, cartilage, and skin. The self-assembled approach of MSC aggregation, which notably constructs cell clusters mimicking the developing mesenchymal condensation, allows high-density stem cell delivery along with preserved cell-cell interactions and extracellular matrix (ECM) as the microenvironment niche. This method has been shown to enable efficient cell engraftment and survival, thus promoting the optimized application of exogenous MSCs in tissue engineering and safeguarding clinical organ regeneration. This paper provides a detailed protocol for the construction and characterization of self-assembled aggregates based on umbilical cord mesenchymal stem cells (UCMSCs), as well as an example of the cranial bone regenerative application. The implementation of this procedure will help guide the establishment of an efficient MSC transplantation strategy for tissue engineering and regenerative medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.