Abstract

An airline crew rostering problem (ACRP) is one of the most important problems in an airline planning process. It aims at determining an optimal assignment of pairings, which refer to sequences of flights starting from and ending at the same crew base, to aircrew to form roster lines. In practice, ACRP is subject to various types of constraints. We present a constraint-implicit mathematical model taking into account the basic, horizontal, and vertical constraints. In order to solve a kind of ACRP, we propose a construction-based variable neighborhood search (VNS) framework that can build rosters effectively. Three construction methods, i.e., crew-by-crew, pairing-by-pairing, and orthogonal constructions, are introduced. To evaluate our approaches, we conduct extensive experiments on two scenarios (intense and light workload) of instances originated from a Chinese airline company and make comparisons among different VNS approaches. The computational results show that the proposed approaches are capable of producing high-quality solutions in both scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.