Abstract

The main challenge of quantum computing on its way to scalability is the erroneous behaviour of current devices. Understanding and predicting their impact on computations is essential to counteract these errors with methods such as quantum error mitigation. Thus, it is necessary to construct and evaluate accurate noise models. However, the evaluation of noise models does not yet follow a systematic approach, making it nearly impossible to estimate the accuracy of a model for a given application. Therefore, we developed and present a systematic approach to benchmarking noise models for quantum computing applications. It compares the results of hardware experiments to predictions of noise models for a representative set of quantum circuits. We also construct a noise model containing five types of quantum noise and optimize its parameters using a series of training circuits. We compare its accuracy to other noise models by volumetric benchmarks involving typical variational quantum circuits. The model can easily be expanded by adding new quantum channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call