Abstract

BackgroundPost-translational modification plays an important role in the occurrence and development of various tumors. However, few researches were focusing on the SUMOylation regulatory genes as tumor biomarkers to predict the survival for specific patients. Here, we constructed and validated a two-gene signature to predict the overall survival (OS) of non-small cell lung cancer (NSCLC) patients.MethodsThe datasets analyzed in this study were downloaded from TCGA and GEO databases. The least absolute shrinkage and selection operator (LASSO) Cox regression was used to construct the two-gene signature. Gene set enrichment analysis (GSEA) and Gene Ontology (GO) was used to identify hub pathways associated with risk genes. The CCK-8 assay, cell cycle analysis, and transwell assay was used to validate the function of risk genes in NSCLC cell lines.ResultsFirstly, most of the SUMOylation regulatory genes were highly expressed in various tumors through the R package ‘limma’ in the TCGA database. Secondly, our study found that the two gene signature constructed by LASSO regression analysis, as an independent prognostic factor, could predict the OS in both the TCGA training cohort and GEO validation cohorts (GSE68465, GSE37745, and GSE30219). Furthermore, functional enrichment analysis suggests that high-risk patients defined by the risk score system were associated with the malignant phenomenon, such as DNA replication, cell cycle regulation, p53 signaling pathway. Finally, the results of the CCK-8 assay, cell cycle analysis, and transwell assay demonstrated that the two risk genes, SAE1 and UBA2, could promote proliferation and migration in non-small cell lung cancer cells.ConclusionsThe two-gene signature constructed in our study could predict the OS and may provide valuable clinical guidance for the treatment of NSCLC patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call