Abstract

BackgroundWith the aging of the population, degenerative scoliosis (DS) incidence rate is increasing. In recent years, increasing research on this topic has been carried out, yet biomechanical research on the subject is seldom seen and in vitro biomechanical model of DS nearly cannot be available. The objective of this study was to develop and validate a complete three-dimensional finite element model of DS in order to build the digital platform for further biomechanical study.MethodsA 55-year-old female DS patient (Suer Pan, ID number was P141986) was selected for this study. This study was performed in accordance with the ethical standards of Declaration of Helsinki and its amendments and was approved by the local ethics committee (117 hospital of PLA ethics committee). Spiral computed tomography (CT) scanning was conducted on the patient’s lumbar spine from the T12 to S1. CT images were then imported into a finite element modeling system. A three-dimensional solid model was then formed from segmentation of the CT scan. The three-dimensional model of each vertebra was then meshed, and material properties were assigned to each element according to the pathological characteristics of DS. Loads and boundary conditions were then applied in such a manner as to simulate in vitro biomechanical experiments conducted on lumbar segments. The results of the model were then compared with experimental results in order to validate the model.ResultsAn integral three-dimensional finite element model of DS was built successfully, consisting of 113,682 solid elements, 686 cable elements, 33,329 shell elements, 4968 target elements, 4968 contact elements, totaling 157,635 elements, and 197,374 nodes. The model accurately described the physical features of DS and was geometrically similar to the object of study. The results of analysis with the finite element model agreed closely with in vitro experiments, validating the accuracy of the model.ConclusionsThe three-dimensional finite element model of DS built in this study is clear, reliable, and effective for further biomechanical simulation study of DS.

Highlights

  • Degenerative scoliosis (DS) is the constitutional alignment of the spinal column caused by degeneration of the intervertebral disc and facet joints after skeletal maturation in which the coronal Cobb angle is greater than 10° [1, 2]

  • We develop and validate a complete three-dimensional finite element model of degenerative scoliosis (DS) in order to build the digital platform for further biomechanical study of DS

  • The integral three-dimensional finite element model of DS including T12 to S1 consisted of 113,682 solid elements, 686 cable elements, 33,329 shell elements, 4968 objective elements, 4968 contact elements, totaling 157,635 elements, and 197,374 node points

Read more

Summary

Introduction

Degenerative scoliosis (DS) is the constitutional alignment of the spinal column caused by degeneration of the intervertebral disc and facet joints after skeletal maturation in which the coronal Cobb angle is greater than 10° [1, 2]. The disease is usually seen in the lumbar or lower thoracic spine of patients above 50 years of age, so. We develop and validate a complete three-dimensional finite element model of DS in order to build the digital platform for further biomechanical study of DS. With the aging of the population, degenerative scoliosis (DS) incidence rate is increasing. In recent years, increasing research on this topic has been carried out, yet biomechanical research on the subject is seldom seen and in vitro biomechanical model of DS nearly cannot be available. The objective of this study was to develop and validate a complete three-dimensional finite element model of DS in order to build the digital platform for further biomechanical study

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.