Abstract

Based on the high prevalence and occult-onset of osteoporosis, the development of novel early screening tools was imminent. Therefore, this study attempted to construct a nomogram clinical prediction model for predicting osteoporosis. Asymptomatic elderly residents in the training (n = 438) and validation groups (n = 146) were recruited. BMD examinations were performed and clinical data were collected for the participants. Logistic regression analyses were performed. A logistic nomogram clinical prediction model and an online dynamic nomogram clinical prediction model were constructed. The nomogram model was validated by means of ROC curves, calibration curves, DCA curves, and clinical impact curves. The nomogram clinical prediction model constructed based on gender, education level, and body weight was well generalized and had moderate predictive value (AUC > 0.7), better calibration, and better clinical benefit. An online dynamic nomogram was constructed. The nomogram clinical prediction model was easy to generalize, and could help family physicians and primary community healthcare institutions to better screen for osteoporosis in the general elderly population and achieve early detection and diagnosis of the disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.