Abstract
BackgroundLymphatic filariasis (LF), often referred to as elephantiasis, has been identified as one of the 17 neglected tropical diseases by the World Health Organization. Currently, there are no vaccines available to treat this infection in humans. Therefore, with the objective of devising a novel preventive measure, we exploited an immunoinformatics approach to design a multi-epitope-based subunit vaccine for LF, that can elicit a variety of immune responses within the host.In this study, different B cell, TC cell, and TH cell-binding epitopes were screened from the antigenic proteins of Brugia malayi and they were passed through several immunological filters to determine the optimal epitopes.ResultsAs a result, 15 CD8+, 3 CD4+, and 3 B cell epitopes were found to be prominent, antigenic, non-toxic, immunogenic and non-allergenic. The presence of conformational B cell epitopes and cytokine-inducing epitopes confirmed the humoral and cell-mediated immune response that would be triggered by the constructed vaccine model.Following that, the selected epitopes and TLR-4-specific adjuvant were ligated by appropriate peptide linkers to finalize the vaccine construct. Protein–protein docking of the vaccine structure with the TLR4 receptor predicted strong binding affinity and hence putatively confirms its ability to elicit an immune response. Further, the efficiency of the vaccine candidate to provide a long-lasting protective immunity was assessed by in silico immune simulation. The reverse translated vaccine sequence was also virtually cloned in the pET28a (+) plasmid after the optimization of the gene sequence.ConclusionSo taken together, by monitoring the overall in silico assessment, we hypothesize that our engineered peptide vaccine could be a viable prophylactic approach in the development of vaccines against the threat of human lymphatic filariasis.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.