Abstract

Racetrack model coils (RMC) have been built at CERN during the past decade, as an R&D tool to qualify conductors and technologies developed for high field superconducting accelerator magnets (Perez <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">et al.</i> , 2016). RMC, assembled in a dipole magnet configuration, proved to be an efficient instrument reducing cost and feed-back time while developing new magnets. In a similar way, as for the High-Luminosity Large Hadron Collider (HL-LHC) project, CERN has designed the enhanced RMC (eRMC) made of two flat coils using 40 (1 mm diameter) Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn strand cable produced with Rod Restack Process (RRP) technology. This conductor geometry, originally designed and produced to build the block coil dipole magnet FRESCA2 (Rochepault <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">et al.</i> , 2019), was chosen to reduce the production time and shorten the road towards the feasibility demonstration to reach 16–18 T magnetic fields in a dipolar configuration. Like previous model coils built at CERN (Short model coils (SMC) & RMC), eRMC1a has been built using the “bladders and keys” type mechanical structure. This paper describes the main construction steps and the powering test results. At 1.9 K the magnet produced 16.5 T peak field in the conductor, the highest ever for a dipole magnet of this configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.