Abstract

The single-beam comagnetometer working in the spin-exchange relaxation-free (SERF) state is being developed into a miniaturized atomic sensor with extremely high precision in rotation measurement. In this paper, we propose a reflective configuration for the single-beam SERF comagnetometer. The laser light simultaneously used for optical pumping and signal extraction is designed to pass through the atomic ensemble twice. In the optical system, we propose a structure composed of a polarizing beam splitter and a quarter-wave plate. With this, the reflected light beam can be separated entirely from the forward propagating one and realize a complete light collection with a photodiode, making the least light power loss. In our reflective scheme, the length of interaction between light and atoms is extended, and because the power of the DC light component is attenuated, the photodiode can work in a more sensitive range and has a better photoelectric conversion coefficient. Compared with the single-pass scheme, our reflective configuration has a stronger output signal and performs better signal-to-noise ratio and rotation sensitivity. Our work has an important impact on developing miniaturized atomic sensors for rotation measurement in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call