Abstract

Abscisic acid (ABA) is an important plant hormone with a variety of physiological functions such as regulating plant growth and helping plants to resist an adverse growth environment. However, at present, the ABA yield of heterologous biosynthesis by metabolic engineering is still low for industrial production. Therefore, five Botrytis cinerea genes (bcaba1, bcaba2, bcaba3, bcaba4, and bccpr1) related to ABA biosynthesis were expressed in Yarrowia lipolytica PO1h; its ABA production was 24.33 mg/L. By increasing the copy number of IDI and ERG12S, ERG20YMT, and bcaba3, bcaba1 genes, the yield of ABA was increased to 54.51 mg/L. By locating HMG-CoA reductase and HMG-CoA synthase in mitochondria, acetyl-CoA in mitochondria was converted into mevalonate; this increased the ABA yield to 102.12 mg/L. Finally, in the fed-batch fermentation process with the addition of dodecane, the ABA yield was up to 1212.57 mg/L, which is the highest yield of heterologous production of ABA by metabolic engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call