Abstract

We extend to the context of hyperbolic 3-manifolds with geodesic boundary Thurston’s approach to hyperbolization by means of geometric triangulations. In particular, we introduce moduli for (partially) truncated hyperbolic tetrahedra, and we discuss consistency and completeness equations. Moreover, building on previous work of Ushijima, we extend Weeks’ tilt formula algorithm, which computes the Epstein-Penner canonical decomposition, to an algorithm that computes the Kojima decomposition. Our theory has been exploited to classify all the orientable finite-volume hyperbolic 3 3 -manifolds with non-empty compact geodesic boundary admitting an ideal triangulation with at most four tetrahedra. The theory is particularly interesting in the case of complete finite-volume manifolds with geodesic boundary in which the boundary is non-compact. We include this case using a suitable adjustment of the notion of ideal triangulation, and we show how this case arises within the theory of knots and links.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call