Abstract

Biomass derived carbon materials have been widely studied as electrodes in energy storage devices due to their renewable nature, low-cost and tunable physical/chemical properties. However, the influences of different treatments for biomass derived carbon materials are still lack of in-depth discussion. In this work, we investigate the effects of the treatment for biomass on the structure and composition of the resulted carbon materials. Especially, the optimal N-doped porous carbon (NPCCS), which was fabricated by H2SO4-assisted hydrothermal treatment and subsequent pyrolysis process using corn silk as raw material, shows a unique interconnected layered nanostructure with ultra-high nitrogen content (18.79 at%). As a result, the NPCCS electrode displays excellent cycling stability and outstanding rate performance in lithium-ion half-cell test and shows high first reversible specific capacity of 523.6 mAh g−1 in full-cell test. This work provides some guidance for preparing biomass derived carbon materials with superior electrochemical performance for the applications in advanced energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call