Abstract

ObjectivesThe aim of this study was to design a novel tracer targeting programmed cell death-ligand 2 (PD-L2) to dynamically monitor PD-L2 expression and perform preclinical screening to identify patients who may benefit from immune checkpoint inhibitor therapy (ICI) therapy. Methods89Zr labelling of DFO-conjugated PD-L2 antibody (ATL2) was carried out in Na2CO3 buffer at pH 7 (37 °C, 1 h). In vitro stability was analysed using radio-thin layer chromatography (radio-TLC). The affinity of [89Zr]Zr-DFO-ATL2 was evaluated by radio-ELISA. Cell uptake, pharmacokinetic, and biodistribution experiments were used to evaluate the biological properties. Micro-PET/CT imaging with [89Zr]Zr-DFO-ATL2 was conducted at different time points. Immunohistochemical and HE staining studies were carried out using tumour tissues from tumour-bearing mice. ResultsThe radiochemical yield of [89Zr]Zr-DFO-ATL2 was 65.6 ± 3.9%, and the radiochemical purity (RCP) of the tracer was greater than 99%. The tracer maintained relatively high stability and had a high affinity for the PD-L2 protein (Kd = 31.85 nM, R2 = 0.94). The uptake of [89Zr]Zr-DFO-ATL2 in A549-PD-L2 cells was higher than that in A549 cells at each time point. Micro-PET/CT showed significant uptake in the tumour region of mice bearing tumours derived from A549-PD-L2 (SUVmax = 3.53 ± 0.09 at 96 h) and H2228 (SUVmax = 2.30 ± 0.12 at 48 h) cells. ConclusionThe high tumour uptake at early imaging time points demonstrates the feasibility of applying [89Zr]Zr-DFO-ATL2 to image PD-L2 expression in tumours and is encouraging for further clinical application in the screening of patients who may benefit from ICI therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call