Abstract

The spherical shape copper oxide (CuO) quantum dots (QDs) were successfully fabricated via copper basic calcium sodium borosilicate (Na2O–CaO–B2O3–SiO2) precursor obtained with a facile sol–gel technique. The microstructural analysis of doped QDs are systemically characterized, such as transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photo-electron spectroscopy. And the results reveal that the CuO QDs with the small size are well dispersed doped in sodium calcium borosilicate glass. Remarkably, the CuO glass materials exhibit the good third-order optical nonlinear susceptibility χ(3) (1.379 × 10−12 esu), which was investigated by femto-second Z-scan technique at the wavelength of 1550 nm, pulse duration of 50 fs, repetition rate of 50 MHz. The glass hybrids displayed a reverse saturable absorption and self-focusing refraction performance. And the mechanism to explain the third-order nonlinearity of CuO glass may be predominantly originated from the surface plasmon resonance effect, the quantum confinement effect and partly from the thermal effect. Besides, it is interesting that the glass hybrids have significant nonlinear absorption effects that endow the material to the potential value of the application of optical limiting device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.